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This paper discusses the long-wave limit of the asymptotic theory of hypersonic 
boundary-layer stability for a gas with the Prandtl number + < cr < 1 and with the 
viscosity-temperature law being a power function. The investigation is confined to 
the local-parallel approximation. 

In the long-wave limit the vorticity mode starts to  interact with the acoustic 
disturbances in the boundary-layer region. The general solution of the linear problem 
in the boundary-layer inner region is analysed numerically and analytically. This 
solution is matched with the long-wave vorticity-mode solution near the transition 
layer. As a result, the inviscid instability problem for a hypersonic boundary layer 
is formulated. The analytical solution of this problem is found and analysed. The 
different limits of the solution are considered and the universal forms of the 
dependence are obtained. A similarity parameter is found which is a function of the 
Prandtl number and the power in the viscosity-temperature law. A significant 
change of the solution behaviour is noticed when this parameter passes a critical 
value. The asymptotic structure of the amplification rate, as a function of the 
wavenumber, is described and discussed. 

1. Introduction 
The present study is an extension of Grubin & Trigub (1993, hereinafter referred 

to as Part 1 ) .  All notation coincides with that introduced therein. 
The long-wave limit in the asymptotic theory of the hypersonic boundary-layer 

inviscid instability is investigated. Previous studies by Blackaby, Cowley & Hall 
(1990) also described in Blackaby, Cowley & Hall (1993) involved the specific case 
cr = 1, w = +. Our study reveals that the results are very sensitive to cr and w .  
Moreover, t h e  asymptotic form may be different depending on these values. 

One of the objectives of our study was to explain the mysterious sudden decreases 
and increases in the otherwise smooth E(Z)  dependence obtained in the numerical 
results of Mack (1969). Another of our objectives was to eliminate an inconsistency 
in the vorticity-mode asymptotic theory in the limit 6+0. It was shown in Part 1 
that the long-wave limit in the asymptotic problem for the vorticity mode leads to 
the infinite increase of ctr, - cti. This was obviously inconsistent with assumptions 
used in the problem statement. Principally, two new effects must be taken into 
account. 

The first is because, a t  & = O ( P z ) ,  the wavelength becomes comparable with the 
boundary-layer thickness. Near the lower edge of the transition layer ii - exp (&yJ 
as yt+- co. Therefore at di = O ( E ~ / ~ Z )  disturbances in the transition layer cannot 
decay before the boundary layer, where - yt = O ( ~ - l / ~ 2 ) ,  and must, be matched with 
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FIGURE I .  The different regions in the flow which emerge as d + O .  

those in the boundary-layer region. The boundary condition changes - the wave 
begins to receive information from the near-wall region. 

The cause of the second effect is an increase of the external flow Mach number in 
the system moving with the wave Mm = &fm( 1 - E )  as ctr -f 00. At ctr - C;-”C;~, Mm = 
O( 1)  and compressibility effects are not negligible ; the term a’( 0- q 2 / T  in equation 
(3.4) of Part 1 cannot be discarded. 

Taking into account these two effects allows one to determine an asymptotic 
structure of the E(d) dependence as 6 -f 0, d --f 0. It will be shown that the dependence 
is divided into four different regions (see figure 8) as d+O. In  region I the 
compressibility effect in the potential-flow region 3 in figure 1 plays an important role. 
This region extends from extremely long wavelength up to region 2 where the 
wavelength is comparable with the boundary-layer thickness. This part of the curve 
continues into region 2, but the curve is strongly disturbed there in the narrow 
regions near the neutral acoustic-mode wavenumbers (regions 3). I n  every region 3 
the local universal structure of the curve consisting of sudden decreases (troughs) and 
increases (peaks) occur. The width of these narrow regions decreases exponentially as 
the wavenumber increases. Finally, at d = O( 1) we obtain the vorticity-mcde region 
4 where the maximum growth rate occurs. The asymptotic description produced is 
in good qualitative agreement with the numerical results of Mack (1969) and predicts 
some previously unknown effects. 

This paper discusses our investigation in five sections as follows. The different 
regions in the flow which emerge in the asymptotic analysis are shown on figure 1. 
The equations in the critical-layer region I in the long-wave limit are obtained in $2. 
The behaviour of the disturbances in the transition-layer region 2 is investigated. It 
is shown that the normal velocity and the pressure do not change in the transition 
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layer. The solution in the potential-flow region 3 is obtained and t,he conditions on 
the upper boundary of the transition layer are found. For normal velocity and 
pressure these conditions coincide with t.hose on the upper boundary of the critical- 
layer region. Finally, the expansion of the solution near the lower boundary of the 
critical-layer region is obtained. This expansion contains one arbitrary constant 
which is to be determined by matching with the lower wave region 5 .  

Section 3 describes how this constant. is obtained by way of an analysis of the 
general solution of the limiting form of the stability equation in the boundary-layer 
region 4. The numerical results obtained for helium are presented. The WKB method 
is used to investigate the problem at large values of the wavenumber. It is shown that 
t,he lower wave region 5 is to  be considered between the boundary-layer region 4 and 
the critical-layer region 1 .  The matching of the solutions in the lower wave region and 
in the critical-layer region is carried out. 

The composite form of the instability problem in the long-wave limit is formulated 
in $4, The analytical solution of this problem i s  found and analysed. The different, 
limits 1 4  (mentioned above) are investigated and the universal forms of the 
E(E) dependence a t  these limits are obtained. It is, surprisingly, observed that 
these universal forms depend only on the sole similarity parameter s = 
( 2 r -  1) / (  1 + cr( 1 - w ) / (  1 + w ) ) .  A significant change of the solution behaviour is 
noticed when the similarity parameter passes the critical value s = t. 

The numerical results for the different values of s are presented in 95. The 
asymptotic structure of the Z(&) dependence is described and discussed. 

2. The analysis of disturbances near the critical layer 
When the wavelength increases, the critical layer moves down to the intermediate 

region between the boundary and transition layers. The velocity and temperature 
profiles in the leading-order approximation may be described there by the power 
dependence, (2.9) of Part  1 .  

Assume the critical-layer region 1 on figure 1 to be situated a t  t = -yt/S = 0(1), 
S+ co as & + O .  From the (2.9) of Part 1 at t = O(1) 

1 (2.1) 
O = 1 - E ” S ~ ~ C ,  C, tkl + . . . , T = PzC, tk2 + . . . , 
F =  1-€~S~1C1C1~,  G =  0 ( 1 ) ,  u = ( l + w ) / 2 a + g ( l - w ) . )  

Define the scaling constant so that ii = O(1) a t  t = O(1). The dissipative terms of 
the operator L, are small compared with the convective ones if 4 (&e”sltl)p’. We 
shall consider only the inviscid limit of the problem in the following analysis and 
mean this condition to be satisfied. From the condition L * f -  @&IT it follows that 
f -  $18, and from L*f- ii/i@’ it follows that f- Sk2-k1e1-u. Substituting these 
estimates into the last of equations (3.1) of Part  1,  we have 6 - S2(k2-k1)e1-2”. 

The scaling factors obtained are used and the following asymptotic representations 
of the functions at  t = O(1) are chosen: 

f”= Qj((t)+ ..., 

K = 2 COS2$/(y- 1). I 



384 IS. E .  Grubin and V.  N .  Trigub 

Then we substitute (2.1), (2.2) into (3.1) of Part  1 and find a t  limit t = 0(1), 
e+O, 6+0 the system of equations 

(c- t" ) f+ Ic, tk1 -I$ = tk8, f - 4' = 0. (2.3) 

The condition of constant pressure across the layer is derived from the normal 
momentum equation. The last equation shows that the disturbances may be 
considered as incompressible in the critical-layer region ~ the divergence of their 
velocity is zero. 

The temperature and transverse component of the velocity may be expressed, if $ 
is known, 

Two additional assumptions were used at the limit. It was assumed that diS+O,  i.e. 
the wavelength is large compared with the thickness of the region under 
consideration. This will be proved later when the order of 6 is determined. It was also 
assumed that 82k1-kze2v-1 + 0, i.e. the relative Mach number l$? = Bm( ~ - - E ) / T ~  tends 
to zero near the critical layer. This is achieved if the value o f M  in the external flow 
remains finite as e+O, at least for subsonic waves. 

In the neighbourhood of t  = 0 the transition layer is located, where the profiles are 
not power functions and, therefore, representations (2.1 ), (2.2) are incorrect. The 
general solution of (2.3) has the following form as t + O :  

$ = $h0(l -- t"/C+ ...)+ t"+1/c((E2+i)+ . " ,  (2.4) 

where $o is an arbitrary constant. Consequently, the boundary conditions for the 
system (2.3) may be formulated as 

f - 0 ,  q5+q50 = const at t + O .  (2.5) 

The constant $o remains indefinite here. It must be determined by matching a 
solution in the transition layer. 

The expansion of the solution a t  t + O  allows one to estimate functions in the 
transition layer (yt = 0(1)), t = O(S1), (region 2 in figure I )  : 

6 &-k1+lEl-u, 0" , ,.)k2--2kI+l 1--2v f i -  1, f" , i , , . )k l -%kl+l  E .  1-u 
€ 7  

These estimations were substituted in equations (3.1) of Part  1 and the limit 
&+ 0, e+ 0 in the transition layer was analysed. We found it interesting that viscous 
effects become significant in the transition and in the critical layers a t  the same value 
of R" - O(&svSk1)-l. Therefore, if the critical layer is inviscid, the transition layer is 
inviscid too. The normal velocity and pressure were found to be constant in the main 
approximation : 

qT = i&S$,+ ..., fi  = 1 +... , (2.6) 

The other functions change and decay exponentially as yt -+ co : 

The value of $,, may be determined by matching with the solution in the external 
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potential-flow region 3 in figure 1. The thickness of this region is comparable with one 
wavelength, ye = &yt = O(1). The effects of viscosity are negligible there in the 
leading-order approximation and the problem may be described by equations (3.4), 
(3 .5)  of Part 1, The solution is 

+i = e - g m V e + .  . . , 6 = -igme-g-Ye [~-yi2;“~(1-5)l-l+. . . , (2.7) 

where gm = [1-#:(1 -5)’]i, and the square root with a positive real part is chosen, 
Re (9,) > 0. The unique case of neutral supersonic modes, when Re (9,) = 0, should 
be considered separately. 

The different limits are further investigated below. Among them there is one a t  
which the compressibility effect in the potential-flow region plays an important role. 
So, we retain the term A?’ in the expression for g,. If Ski = o(&”), g, = 1 + . . . , but 
if = O(e;-.), then the complete expression for g, is to be used. 

As a result of matching (2.7) with (2.6), we obtain conditions 

$ho = g& ES’”2+T2 = 1. (2.8) 

From the latter we obtain 6. and thus a set of estimates is completed. Now we can 
see that the condition &Y+ 0 as d .+ 0, assumed above, is satisfied. 

The general solution of (2.3) at t + + co is 

9 = G(t”-~+O(t-”l)) +tkzz-kl+’/(2k,  - k , -  1 ) + 0 ( t k ~ - 2 k ~ + ’  L (2.9) 

where C: is an arbitrary constant. 
Constant C is to  be determined by matching with a solution in the region situated 

below the critical layer (region 5 in figure 1 ) .  The thickness of this region is 
comparable with the wavelength. As the wavelength increases, the thickness of the 
region becomes comparable with the total boundary-layer thickness. We shall 
consider this case in detail, because it is the most general. 

3. The analysis of disturbances in the boundary layer 
In the boundary-layer region (4 in figure 1) yb = O ( 1 ) ;  the viscous effects are 

negligible, except in the near-wall region with a thickness of Ayb = O((&)-;). Apart 
from there, for & - N E ~ + ~ / ~  the wavelength is comparable with Ay, and viscosity 
affects the higher acoustic modes. So long as these effects have no influence upon the 
leading-order approximations considered here, we confine our investigation to the 
inviscid problem (3.4) of Part 1 .  

The relative Mach number in the external flow Mm is considered limited as e+O, 
so that E = 1 - eqc,,, q &. In the equation for pressure perturbations we use the 
variable 7,. As e - f O , ~ ,  = 0(1) 

where a,, = &e-lIKz. In the leading-order approximation a wave moves with the 
external flow speed; equation (3.1) does not contain cb. 

We choose two linearly independent solutions of (3,1), 7iA and ir,, so that at  
g = yb-(?”++m 



386 S.  E .  Grubin and 8. N .  Trigub 

the expansion of #A does not contain the term E-’*i-’. The general solution of 
the initial-value problem for equation (3.1) with the initial conditions ir’(0) = 0, 
W ( 0 )  = 1 is 

(3.3) 

To obtain the matching conditions for the upper region it is necessary to determine 
factors A ,  B,  but because of an arbitrary normalization it is enough to know only the 
ratio B / A  . This is done by a numerical analysis of an initial-value problem solution 
at  large values of rb. Factor A may be obtained easily with high accuracy due to the 
rapid decay of the function ?r, as rb --f 00. To calculate factor B we need to know all 
the terms of the power series 00 

= 1 + a$ @ (3.4) 
1-1 

up to 0, < -2h,- 1. For any A,, A, the set of powers (0,) must be ordered so that 
0, > O,,,. Substituting the expansion (3.4) in (3.1) and using the expansions for ub, Tb 
from Appendix A of Part 1 we obtain the factors aj. To find cumbersome expressions 
of aj we used a computer code for symbolic transformations. 

The ratio B / A  calculated for helium (y  = %, CT = $, w = 0.647) is plotted as a 
function of ab in figure 2 .  Nine terms of the series (3.4) were used in the calculations. 
Discontinuities are located at  points ab = atn, n = 1,2,  . . . , where A = 0, ? i+O at  
r,,+ co. It was shown by Mack (1969) that the latter is the boundary condition for 
neutral acoustic modes at  the hypersonic limit. In the leading-order approximation 
the inflexional acoustic modes coincide with the regular ones (those with 13 = 1 ) .  As 
ab increases, the singular regions near the discontinuities become very narrow and 
almost everywhere RIA takes the form of a continuous monotonically rising 
function. 

When a, + 00 an analytical expression for B / A  may be obtained by an application 
of the WKB method (Nayfeh 1973). This method was used to describe higher 
acoustic modes by Cowley & Hall (1990) and Smith & Brown (1990). Equation (3.1) 
has one turning point, a t  rb = r,$, where q = ~T,(KU~--) = 0. At rb c 7; the 
relative Mach number A? > 1 and q > 0, and the solution of (3.1) oscillates. For 
7 > r;, A? > 1 and q < 0, and the solutions have an exponential nature there. 

After the transformation of variables 

’ = ub(rb) [-z(~b)/q(7b)l”v(x)~ (3.5) 

z = -[#x,[qidtr forq > 0, 

we obtain the equation for v ( z )  : 
v”-(Z-x(rb))w = 0, 

For f = O ( l ) ,  the general solution of (3.6) is 

w = aAi(z)+bBi(~)+O(a;~) ,  

where Ai, Bi are Airy functions. 

(3.7) 
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FIGURE 2. The ratio B / A  in the general solution of (3.1) obtained numerically for helium, 
$ = O , T , = l .  

The factors a, b are determined from the initial conditions e(0) = 1, f ' ( 0 )  = 0: 

a. = &q(O))+sin [ ~ l ~ ~ ~ + a n - & / a , + 0 ( a , 2 ) ] ,  
(3.8) 

b = &(q(O))'cos [ a b T 0 + ~ - - - / a b + 0 ( a b 2 ) ] )  

Using the expressions of Uh, Th from Part 1,  it  is noticed that x - ~ [ ~ ( ~ e - l ) a ; ~  as 
[+ GO. Therefore, the approximation (3.5) is invalid a t  5 - 0 ~ ; ' ( ~ 2 - ~ ) ,  i.e. near the outer 
edge of boundary layer in the region with thickness comparable with one wavelength 
(region 5 in figure 1 ) .  This region has been defined as ' the lower wave region'. The 
new variable t = 1/2C,  a,, [-'z+'/(A, - 1) is introduced here. From an analysis of (3.1) 
we find 

if  = 7ro(t) + O(a('('2-1))) 

T:- ( l / t )  (2k,  - k,) m&-n0 = 0. 

(3.9) 

(3.10) 

The general solution of (3.10) may be expressed by the modified Bessel functions 

TO = t'(cI1r(t)+CKKr(t))' (3.11) 
I,, K,, r = k, -$k, ++, 

where C,, c', are arbitrary constants. 
The expansion of (3.7) as a,,+ co, t = O(1) is 

f i  = Q t k i - k z / 2  [+,pb7rn et( 1 + (J(a{/&-l))) 

+ b eabTm eFt( 1 + O(a{'('z-''))l ( I  + O(a{'(Az-l) I ) >  (3.12) 

The first term in square brackets in (3 .12)  is exponentially small compared with 
the second everywhere except in the neighbourhood of the infinite set of points where 
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b = 0. A t  these points a, = a,, = n(n+ i ) /~ ,+O( l /n ) ,  where n is integer, n % 1. At 
points a,, where n+O near the outer boundary, the spectrum a,, approaches the 
neutral acoustic-mode spectrum as ab + co . 

General solution (3.11) is matched with (3.12) in the neighbourhood of a,,, where 
the first and second terms in square brackets in (3.12) are comparable. Using 
asymptotic expansions of I,, K ,  a t  t +  co (Abramowitz & Stegun 1970), we obtain 

C, = (7~/2)bQe-~b~-,  C, = (2/n)%Qeab7m. 

Finally, we use asymptotic expansions for Ir ,K,  as t+O (Abramowitz & Stegun 
1970) and compare (3.9) with (3.3) to find 

(3.13) 
where r is the Gamma function. 

The representation (3.13) is composite, because the second term is negligible 
everywhere, except in the neighbourhood of abn. We reserve this term to analyse the 
solution in regions 3 of figure 8. 

A number of a&L from the neutral acoustic-mode spectrum and their WKB 
approximations abn are plotted as functions of temperature factor Tf in figure 3. The 
calculations were performed for helium, @ = 0. The results are in good agreement for 
n > 3. The curve of B / A  dependence outside the singular regions near af, is defined 
'the limiting line'. The limiting line is in satisfactory agreement with its WKB 
approximation only at 2 50. We assume is caused by a slow decay of the second 
and further terms of (3.13) as aI, + a. 
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Since the asymptotic expansion of 7? is known, we are able to obtain the expansion 
of 6 and perform matching with the functions in the critical-layer region ( 2 . 2 ) .  This 
is performed near the points a&, where B / A  $ 1, G = O(1). The final result is 

2a- 1 
1 =  k,+ 1 = -- 

kl  1 + a ( l  - w ) / ( l  + w )  

1 (3.14) 

As seen below, parameter s plays an important role in the long-wave limit. In  this 
study we suppose that 0 < s < 1 .  

4. The solution of the inviscid instability problem 
The stability problem of the long-wave limit ~ . + 0 , & + 0  is formulated as: 

(F- PI) $75’ + IC, t”-’$75 = tkz, (4.1) 

$75 = g , / ~  a t  t = 0 ,  

It is necessary to find eigenvalues cfor which a solution of (4.1) exists with G from 

The problem is composite and may be reformulated in different ways, depending 
on the correlation of d and E”. At the limit c +  0, g, + 1 only at d - e(2y-1)(s+1)iz, and 
C: = 0(1) only near the points a:%, otherwise (n’ = o(1). 

(3.14), g, = (1-/C(l--c“)2/e)~, E =  1-eE.”6~1C1C,c, cis’c2+1C2 = 1.  

The solution of (4.1), observing the boundary conditions a t  t = 0, is 

Here only the modes are considered for which 0 < E,. < 1 ,  and a critical layer 
appears. Without special study we suppose that the well-known relations (Lin 1955) 
between solutions of the inviscid (4.1) and complete viscous problem are satisfied. 
This means that the amplified solution of (4.1) obtained by an integration along the 
real axis t is the limit of the complete problem solution as g+ co. To obtain the 
damped solution eigenvalue q > 0, being the limit of the complete problem solution, 
the integration must be performed in the complex plane t along the contour situated 
above the pole tkl = E. 

After an integration along the contours we find 

where the minus sign in the exponent is chosen for amplified modes < arg (q < 2x, 
and the plus sign is for’ damped 0 < arg (5) < $x modes. For the neutral modes both 
expressions coincide. Demanding that (4.2) satisfies the boundary condition as 
t + + co , we obtain the dispersion relation 

g,/e2KeFixscs-1 = -G (4.4) 
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At ab = O(1) outside the region very close to the points a,, = a& (region 2 on 
figure 8) it) is convenient to represent (4.4) in the following form: 

(4.5) G“ = 1 -El/(l+s)c c x 
1 1 b? 

g, = 11 -,€(1-s)/(l+s)clzc12x~]~, x, = O(1). 

A leading-order approximation for the solution of (4.5) as e+ 0 in region 2 is 

For bhe amplified modes only, 4 = $+ = ~ T C - ~ / ( S +  1) satisfies the condition 
&t < 4 < 2x. There are no solutions which satisfy the condition 0 < $ < fn for 
damped modes. 

Near the points ab = a,*, (regions 3 in figure 8) the last of equations (4.5) 
contributes to a leading-order approximation even as E 4 0. The I?(&) dependence may 
be expressed in regions 3 in the universal form 

(AYi+s - 1 )  ag = X,Z eZi$+, 

Xb = X;(a&Jxg(ag) .  

I ag = O(l) ,  xg = O(1). 

It, should be noted that solution of (4.7) depends on t,he sole similarity parameter s. 
At &kz 4 di 4 1 the asymptotic expansion of RIA a t  ab + co may be used. In t,his 

case we transform (4.5) into 

It is consequence of (3.13) that outside the neighbourhood of aEn,R = O(1) as 
ah+ co. Then the last of equations (4.8) does not contribute to the leading-order 
approximation as d i - t O .  Therefore, the solution (4.6) remains valid a t  this limit too. 

The limit ah = O ( E ( ~ - ~ ) / ~ ) ,  e + 0, when the compressibility effects contribute to the 
leading approximation (g, =!= 1) is the most interesting one (region 1 on the figure 8). 
The relation (4.5) may be transformed into the universal form again with the sole 
similarity parameter s : 

(4.9) 1 
( 1  -Xf)i = a, e T i q y : + s  + O(€(l-s)iZa,X2) 1 ,  

F = 1 - (e/K):U,, ab = &“/“q c,z K ) ( ’ + s ) / z  a1/K, 

aI = O ( l ) ,  x, = O(1). 

The solution (4.6) is the leading-order term of the solution (4.9) as aI + 00. Hence, 
(4.9) is a leading-order approximation for the dispersion relation (4.5) as E - +  0, 
di: + O  everywhere except in the neighbourhood of the points a:,. 
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We can see from the analysis of (4.9) that the behaviour of the X ,  dependence in 
the ranges 0 < s < t and < s < 1 is drastically different. As a,+O at  0 < s < i, the 
only solution is an amplified mode with the asymptotic expansion 

Therefore, in the neighbourhood of a1 = 0 the waves directed along the flow (@ = 0) 
are subsonic a t  0 < s < (Er > 1 - l/Nm) and supersonic at < R < +. 

I n  the range t < s < 1 there are no solutions of (4.9)) for which Im (XI) --f 0 as 
a, + 0. Only the supersonic amplified mode with the asymptotic expansion 

X ,  = (1 /@s)  ein(l+l/2s) + . . . 
exists there. For this solution the growth rate diC, - e(3-s)/2+1/k2 I a[l-s)/s at fixed B 

increases as E+O. This is a very surprising result. The suppositions used to  obtain 
(4.6) are discarded at this limit and to obtain the maximum growth rate we must 
return to the initial statement. I n  the present study this investigation was not 
performed. This limit was resolved for the special case g = 1, o = t by Blackaby et al. 
( 1992). 

At points a,*, the branches of the damped modes begin. An asymptotic expansion 
of the (4.5) solution near a,*, is 

Xb = [-&(ab-a&)]f+. . . , 

If ab < a&, then only neutrual modes are possible near a,*,. But for ab > a,*, either 
amplified or damped modes exist. 

5. Discussion 
The curves of the dependence of - Im (X , )  on a1 obtained from equation (4.9) for 

amplified modes are represented in figure 4 at  different values of the similarity 
parameter s. As has been established, a t  0 < s < + (figure 4a)  these lines start from 
the point a1 = 0, Im (X , )  = 0. The curves have maxima which are a t  0.75 < al < 1.5 
and move to the left as s increases. A form of the curve at  0 < s < a  is in 
qualitative agreement with the numerical results of Mack (1969). As s + the curve 
for the interval 0 < 01, < cz? = 4 2  3-t m 0.62 becomes more and more gently sloped, 
and finally a t  s = t there is a supersonic neutral mode, Im (XI) = 0. As mentioned 
above, this is a special case, and in the present study it is considered only as a limit. 

At t < s < 1 (figure 4 b )  the behaviour of the dependence changes significantly, 
- Im (X , )  + + 00 as a1 + 0. If s is close to a, a maximum at  a, > a: and a minimum 
a t  a, < 01: are observed. As s increases, maximum and minimum merges, and the 
dependence becomes monotonic. 

The form of the dependence a t  s > + is unlike the results of calculations of Mack 
(1969). However, his calculations were performed at  finite Mach number (M,  = 10) 
for air at wind-tunnel conditions. The dependence of viscosity on temperature in this 
case is not a power function, but near the upper edge of the boundary layer i t  may 
be estimated that approximately w = 1) CT = 0.71, then s M 0.42 < i. As was 
mentioned, the limit e+ 0, a1 + 0 requires further investigation. 
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FIGURE 4. The imaginary part of the solution of (4.9) 2t diff'erent values of s (region 1 on 
figure 8), c" = I -X,/M. 
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FIGURE 5 .  The real part of the solution of (4.9) at different values of s. The wave is subsonic at 
Re (X,) < 1 and supersonic at Re (X,)  > 1. 

The real part of X ,  is plotted as a function of a1 in figure 5 for a number of values 
of s. The wave is subsonic at  Re (X , )  < 1 and supersonic a t  Re (X , )  > 1 .  If 0 < 5 < $, 
the wave is supersonic in an interval 0 < a1 < als, sonic at  its edges, and subsonic at  
a1 > als. The a,, increases together with s. 

If s > + (figure 5 6 ) ,  there is also interval 0 < a, < als, where the wave is supersonic. 
Here, however, the wave does not become sonic as a1 + 0 ; Re (X,) increases infinitely 
at this limit. The aIs decreases with the increase of s. 

The curves of the universal dependence of -Im(X,/IX!(a&)l) on ag near the 
points a;n obtained from (4.7) for a number of values of s are plotted in figure 6 .  The 
dependence has the distinctive form of a sudden trough with a peak a t  one side of it. 
The similarity parameter value s = g again separates two different kinds of 
dependence. At 0 < s < 4 (figure 6 a )  a peak is situated to the left of a trough, which 
is in agreement with the numerical results of Mack (1969).  If s = & the trough proves 
to be symmetrical, and a t  < s < 1 (figure 6 6 )  a peak is located to the right of a 
trough a t  ag < 0. 
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FIGURE 7 .  The real part of the solution of (4.7). 

The curves of the dependence of Re (X , / IX~(cc~J  I) on olg are represented in figure 
7 (a,  b) .  As s increases the asymmetry gains strength and a peak develops to  the left 
of a trough. 

The results of‘ Mack (1969) demonstrate t,hat the branches of F(&) dependence to  
the left and to the right of a trough either start from different neutral modes or merge 
above the neutral line. In  the present study we use an approximation in which there 
is no difference between inflexional and regular neutral modes. Therefore, in this 
approximation the branches merge in a trough at  point c“ = 1 (Xb = 0). Close to the 
point ag = 0 the representation (4.7) is invalid and an internal asymptotic structure 
of the dependence is revealed there. This structure may be obtained by taking into 
account the additional terms in the expansion (3 .1) .  More details of the structure of 
the modes with wavenumbers close to  those of acoustic modes, are given for this 
special case in Blackaby et al. (1993). 

Now we can assemble the results obtained to describe an asymptotic structure of 
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FIGURE 8. The map of the asymptotic forms of high-Mach-num@ solutions of Rayleigh’s 
instability equation. In region 1, ti - (C, cos $) el/k~+(l-s)‘z sin ITS, Ei - ~ l c o s  $; in region 2, di - ~ ~ ’ ~ 2 ,  

Ei - C, el’(l+s) ; in regions 3, ag - 1, - C, ~ l ’ ( l + ~ )  ; in region 4, & - 1, ci - C, E”.  

Ei(di) dependence as E -+ 0. The range 0 < s < 
further investigations are necessary as a, + 0. 

The scheme of the dependence is conventionally represented in figure 8. The range 
of 2, where an amplification takes place, divides into four regions. In  region 1 the 
dependence is described by (4.9), Ei - ei/cos I#, 2 - (C, cos $)l+sel/k~+(l-s)’z sin ITS.  A 
compressibility influence is appreciable there. This dependence continues into region 
2, where the wavelength and the boundary-layer thickness are comparable, d - e1Ikp, 

Ci - C, ~ l / ( l + ~ ) .  But there the dependence is considerably disturbed in narrow regions 
3 with a width Adi - where sudden troughs and peaks occur. These 
narrow singular regions are the neighbourhood of the points 2tn, corresponding to  
neutral acoustic modes. The universal structure of the dependence E(d) in these 
regions is described by (4.7). 

In region 4 the wavelength is comparable with the transition-layer thickness, 
di - 1, Ei - C1 E“. The region is terminated at the neutral vorticity-mode point E n ( c ,  
o) - 1.  This contrasts with the case o = 1, investigated by Balsa & Goldstein (1990) 
and Smith & Brown (1990), where 2, + co as e + O .  The maximum amplification rate 
maxg (Ei) - C, e” is observed in region 4. At d - 1 the singular regions near the 
points of neutral acoustic modes exist too but their width is exponentially small. 

As Mach number increases Ci decreases, and moreover Ci --f 0 as E + 0 for every di. 
In  region 1 Ei decreases more slowly and the maximum becomes more distinctive. 
Regions 1, 2 are displaced to the left, and the width of the troughs decreases. 

An increase of the wave inclination angle $ (we consider only M ,  cos I# + 1) does 
not change in the leading order the &(a) dependence in regions 2, 4. In  region 1 Ci 
increases, and its maximum moves to the left. 

only is considered, because a t  s > 
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Cooling of the wall induces a fast increase of C ,  (Part 1). Consequently, in regions 
2, 4 Ei increases and destabilization takes place. In  region 1 Ei in the leading-order 
approximation does not change but the maximum moves to the right. Then a t  finite 
t: the maximum approaches the first (and the most significant) trough, whose position 
weakly depends on the temperature factor (figure 3). As a result, the trough ‘cuts off’ 
the maximum that we see in the calculation of Mack (1969). Therefore, the cooling 
in region 1 proves to be stabilizing. 

We found the comments and suggestions made by Dr X. Cowley very beneficial and 
would like to express our appreciation to  him. We would also like to thank the 
INTECO company for its support and assistance in preparing the paper for 
publishing. 
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